Skip to Content

Aircraft Carrier Flight Operations (FLT OPS)

"Where do we get such men?"

Early Naval Aviation

[1911 - 2011 One Hundred Years of Naval Aviation]

Retired Veterans, Indy, Kitty Hawk, Connie, Ranger
[Bremerton NOV 2012]
Argentina ARA-25; Australia R-21; Brazil A-11, A-12 Last Updated 11 JUL 2013 Deck Comparison;
CVN-72 at Pearl

USS Ticonderoga CV-14

USS Franklin D. Roosevelt CVA-42

USS Enterprise CVAN-65

Flight Quarters
211K wav
Start'em Up!
239K wav

General Information on Carrier Flight Operations

"Flight Deck Operations"!
It's what separates the Naval Aviator from every other Aviator. The Catapult Hookup, the Launch, the Tailhook catching a "Three Wire". It all adds up to an environment that demands full-time professionalism just to survive. Those who excel in this environment truly must be classified as "The Best". The challenges are many. After a"high pucker factor" combat mission, it's the Naval Aviator that finds that home is a runway that is barely longer than the width of some land based runways, and that it is pitching and rolling across the ocean. The successful carrier landing, the "Trap" in NavAir jargon, is the ultimate test of nerve and flying skill. And to crank up the difficulty even higher, do it at night or in bad weather. And in "Blue Water Operations", far out at sea, if one can't get aboard - well the options are very, very limited; and highly undesirable.
In reality, it isn't even a "landing". The aircraft is flown onto the deck. There is no long runway to settle onto, it's a "HIGH SPEED ARRIVAL", of tons of aircraft at speeds that allow for an immediate powered return to flight if a "Bolter" (non-trap) occurs. Don't for a second think that this is a reckless dive for the deck. It's an act of supreme piloting skill supported by a highly trained, professional group of people. The pride in the skills necessary to bring an aircraft "aboard" is clearly demonstrated by the Trap Rating System itself. Every Trap is scored, and the target score is the "OK3" (3 indicating the 3rd wire). You have just flown tons of aircraft at more than a hundred miles per hour onto a moving deck and it's - "OK".

Carrier Hardware

Carrier Deck Layout Comparison
"Super Carriers"
Launch/Recovery Configuration Comparison Chart
(CV-9 to CVN-65 - NOV 1963)

The carrier's catapult is a steam driven monster capable of bringing tons of aircraft from zero to over a hundred miles per hour in seconds. Not a simple steam piston with a "Yes" button, but an intricate machine requiring dedicated maintenance and knowledgeable operators. The "Shuttle" is the connection point between "cat" and aircraft. For the Skyhawk a cable bridle was looped around the nose of the shuttle and its ends connected to launch hooks in the wheel-wells of the A-4. The "Holdback", just under the tailhook connection point on the A-4, prevents movement of the aircraft until the catapult fires. The "Breakaway Link",inserted in the "Holdback", fails at a specific tension when the catapult fires to allow the "Shuttle" to pull the aircraft down the deck to flying speed. The Breakaway Link and the steam pressure setting must coincide with the aircraft's type and weight to ensure a successful launch. Launch hardware (catapult and bridle configuration) varied by class of carrier, and the shuttle in particular evolved as new aircraft were designed to utilized the aircraft nose wheel strut as both shuttle hookup and holdback. (19DEC62: E-2 Hawkeye catapulted from the USS Enterprise in the first shipboard test of nose-tow gear designed to replace the catapult bridle. A second nose-tow launch was made by an A-6A.)
A/C Holdback
A/C Holdback
Bridle and Holdback Bridle Hookup Ammo Xfer

The carrier's landing system, to aid aircraft in landing aboard the carrier, includes the Landing Signal Officer) and an integrated system of visual and electronic aids. The most prominent visual aid is the “Ball”, or "Meatball", a yellow light between a set of green horizontal datums (lights). It represents the aircraft's position in relation to the appropriate glide-slope. If the "Ball" is above the datums you're high, below you're low. To illustrate the accuracy necessary to bring an aircraft aboard, a typical modern landing system would have the following glide sloop window. At the start of the approach, three-quarters of a mile behind the boat, from full high to full low in the ball's horizontal reach, is about 21 feet of altitude for the a/c. At the ramp at the stern of the ship's flight deck, its about four feet. Right at the arresting wires, each cell (increment) of the ball represents nine inches of altitude.

The Arrestment Cables are held a few inches off the flight deck by what look like upside-down car leaf springs. The number of cables vary by flight deck configuration (class of ship), from as many as seven to as few as three. These arrestment cables are referred to as "Cross Deck Pendants".
"BUG" Roach -
Landing Sys.
Arresting Gear Site

Carrier Procedures


The "Main Battery" of the Aircraft Carrier is its "Air Wing". Unlike the Battleships of old, the Carrier's striking power is in its aircraft, not in a sixteen inch gun barrel. Only with much hard work by both Ship's Crew and Air Wing Personnel, is the "Main Battery" able to fulfill its mission when called upon.
Launch and Recovery Operations on the "Roof" of a "Flattop" is the world's most unique aviation environment. It's been referred to as a "Ballet", an intricate dance of moving machines and people. But unlike a Ballet, where less than perfection only results in poor ticket sales; poor performance during Flight Deck Operations is likely to result in accident, injury, or death. The "Flight Deck" is without question, one of the world's most dangerous places to work. It is a very unforgiving work place, and the pace is demanding. Injury or death is always but a split second away. The Flight Operations "Cycle" requires 14, 16, 18 hours or more of intense focus interrupted only by hectic minutes of maintenance and repair between launch and recovery. All efforts are geared toward one goal. Get Naval Aviation's "Big Guns" in the air!

Carriers came with different flight-deck configurations. The WWII era “Essex Class” ships that the Skyhawk flew from went through two major upgrades to enable them to handle jets more efficiently and safely. The first upgrade was either “SCB-27A (hydraulic catapults,) or “SCB-27C” (steam-driven catapults). “SCB-27” included a large number of other improvements, such as a stronger flight-deck, improved aircraft elevators, new arresting gear, removal and reconfiguration of “5”inch guns, redesign of the “Island”, and many others. The second major upgrade was “SCB-125”, which consisted of the placement of the “angled-deck”, making it possible for jets to “go around” if it missed an arresting wire. These upgrades were accomplished between 1947 and 1959, and proved the flight-deck concepts utilized for the first “Super-Carrier”, the USS Forrestal CV-59. From the “SCB-27” upgrade came the commonly used term among naval aviators when referring to these carriers, “27-Charlie”

On the Flight Deck the crew wear a variety of brightly colored shirts. Here is who they are and what they do:
Yellow Shirts: Flight Deck Officers and Plane Directors.
These are the only people on the flight deck authorized to move aircraft, or to give hand signals regarding taxiing the a/c, or moving it.
Blue Shirts: Flight deck crew, always work under the direction of a Yellow Shirt Director as part of a designated crew. Plane pushers/handlers; chock planes, push planes, scrub the decks, and do all the tough jobs on the flight and hangar decks.
Green Shirts: Catapult and Arresting Gear people. Operate, and maintain the Catapults and Arresting Gear. Squadron Aircraft Maintenance people also were green. Brown Shirts: Squadron personnel, in particular Plane Captains. (No ship's company wear brown shirts.)
Red Shirts: Aviation ordnance crews. Load and "arm" those weapons on the aircraft. Sometimes referred to as "BB Stackers", or "Ordies". Purple shirts: Aviation fuels people. Referred to as "Grapes". Gas aircraft. Operate & maintain carrier avgas/jet fuel/ av lube oil systems.
Checker shirts: Squadron maintenance Quality Control people. Responsible for final overall checks of a/c readiness before launch. White shirts: Mail and people handlers for carrier on board delivery (COD).
White shirts with a Red Cross: Medical corpsmen assigned to flight deck during flight quarters. White shirts with a Red Cross are part of the crash crew.

Cat Officer Port Side
Cat Operator
Verifying A/C
Launch Weight
A-4F Ready
Port Cat

Skyhawk Launch

"Start'em Up!

Early models of the Skyhawk did not have nose wheel steering, and the pilot used his brakes for directional control. To speed flight deck operations, Skyhawks without nose wheel steering were guided by a Blue Shirt (A-4C 1967) who followed the directions given by the Yellow Shirts.

All Skyhawk models used two catapult hooks, one in each wheel well, to receive a strong steel cable "bridle" that did a half-moon loop around the catapult launch shuttle.
Bridle Hook
Tilly Bar
for steering
Connecting bridle to
a/c launch hooks
VT-7 TA-4J
under tension
A-4C VA-153

Skyhawk Recovery - "The Trap"

The "Tailhook" is what separates carrier aircraft from all others. Navy aircraft that are designed to operate from carriers have to withstand the shock of arriving on-deck at flying speeds and then capturing a cable with its tailhook and coming to a very quick stop.

"The LSO" = Paddles"
"The Trap" = the aircraft's tailhook snags an arresting cable and comes to a stop.
"The Bolter" = the aircraft's tailhook does not snag an arresting wire and the aircraft continues down the deck and back into the air.
TA-4F Tailhook RAN A-4G
Tailhook and
Arresting Cable
VSF-3 A4D-2
into the barricade.

Skyhawk CXR Emergency Procedures

Skyhawk emergency procedures for at-sea flight operations.

"Fouled Deck Range" (carrier's flight deck unable to accept landing aircraft) of the Skyhawk is dependent upon a number of factors. Engine type, fuel aboard, drag coefficient (external tanks and ordinance racks), head or tail winds, ambient air temperature, gross weight of the a/c. Obviously the idea is maximize endurance with available fuel.

"Bingo"Range" (to nearest alternate landing site) of the Skyhawk depends on the same factors described above. If the aircraft's "Bingo Range" is not sufficient to enable the a/c to reach an alternate landing site; and in-flight refueling is not available, then ditching in the sea becomes a possibility. Ejection from the aircraft is preferable to the pilot ditching with the aircraft. Fuel management is a critical task for every pilot.

Carrier Barricade arrestments are flown as a normal arrestment. However, the visual on the "Meatball" may be lost late in the approach as the barricade stanchions may obscure the mirror. If the barricade arrestment is made "wheels up", then the approach light indications will not be available to the LSO and the indexer indications will not be available to the pilot.

Carrier OPS, "Eject-Eject-Eject!"

Field launches and recoveries.

AND let us not forget that the Marine Skyhawk Units utilized a land based aircraft launch and recovery system. There were also pernament catapult field and arrestment installations for testing purposes.
SATS Marine
A-4E launch.
NATC ground
test launch A-4E.
Ground test launch
NATF Lakehurst

page | by Dr. Radut